
JOURNAL OF AIRCRAFT
Vol. 32, No. 6, November-December 1995

Center of Gravity and Minimal Lift Coefficient Limits of a
Gliding Parachute
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Technion—Israel Institute of Technology, Haifa 32000, Israel

Standard static stability analysis is used to reveal a peculiar nature of longitudinal e.g. limits of a gliding
parachute. Specifically, it is shown that the most forward e.g. position of the parachute is limited by a loss of
longitudinal static stability and by a loss of control power, whereas the most rear e.g. position is limited by a
requirement of stall-free controls range. It is also shown that a forward e.g. limit imposes a limit on minimal
lift coefficient possibly attainable at trim. A typical value of this minimal lift coefficient limit predicted by the
present analysis is in a good agreement with the top speed data of currently flying designs.

I. Introduction

T HE term "gliding parachute" is associated with several
types of vessels utilizing ram-air-inflated flexible cano-

pies to produce lift. In this exposition we shall use this term
to imply mainly a recreational soaring vessel operated by a
single pilot.

Longitudinal and lateral control of a gliding parachute is
conventionally done with the lines attached to the trailing
edge of the canopy, a pull on these lines causes the trailing
part of the canopy to flex downward, serving much the same
as a pair of conventional elevens. In some designs, a pilot
can also control the lengths of the lines attached to the forward
half of the canopy so as to move himself (and the vessel's
e.g.) forward and backward relative to the canopy.

In the context of longitudinal control, two flying qualities
of a gliding parachute seem peculiar. One is that for a lon-
gitudinally stable vessel, the lift coefficient increases with ele-
vons deflected downward. The other is that, judging from the
top speed data of currently flying designs, there seems to exist
a minimal lift coefficient (roughly 0.5) at which a conven-
tionally built gliding parachute can be possibly trimmed, re-
gardless of the particularities of its design.

In this exposition, a standard longitudinal static stability
analysis (e.g., Ref. 1) is used to show that a minimal lift
coefficient limit does indeed exist; moreover, it is a conse-
quence of requiring the lift coefficient to be an increasing
function of elevons deflection. Specifically, it is shown that,
in apparent contrast with a conventional vessel, a loss of lon-
gitudinal static stability and a loss of control power each im-
poses a limit on the most forward e.g. position, and, concur-
rently, on the minimal lift coefficient possibly attainable at
trim. It is also shown that, with a proper design, requiring
the lift coefficient to be an increasing function of elevons
deflection is sufficient to ensure longitudinal static stability;
in which case both the forward e.g. and minimal lift coefficient
limits are associated with a loss of control power.

Under several simplifying assumptions, linear lift curve slope,
parabolic drag polar, fixed-shape canopy, fixed-lengths lines,
and plain flaps for elevons, the present analysis suggests a
very simple expression for the minimal lift coefficient limit.
The value of this limit depends, mainly, on the relative elevons
chord and on the lines-to-chord lengths ratio; specifically, it
decreases with an increase in either parameter. A sample
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calculation of the minimal lift coefficient limit for a typical
gliding parachute yields, indeed, about 0.5.

II. Pitching Moment
Consider a gliding parachute in a symmetric unaccelerated

flight. Following conventional definitions of aerodynamic
coefficients, let the projected wing area and its mean aero-
dynamic chord serve as the respective references. Let Cd w,
Cdh and Cd p be drag coefficients of the canopy, the lines,
and the pilot, respectively. Let, also, CL and CMiH,0 be the lift
coefficient and the pitching moment coefficient of the canopy
about its aerodynamic center, respectively.

Select a standard Cartesian coordinate system, with the jc,
y, and z axes pointing forward, right and downward, respec-
tively. For the sake of being specific, it will be assumed that
the x axis connects the trailing and the leading edges of the
midsection of the wing. Using wing's mean aerodynamic chord
as a unit of length, let (xw, ZM,}, (;tcg, z c g) , (xh z,}, and (xp,
zp) be the respective dimensionless coordinates of the wing
aerodynamic center, vessel's e.g., lines' c.p., and pilot's c.p.
(see Fig. 1). Also, let a be the angle of attack, measured
between the direction of the flow and the x axis.

The pitching moment coefficient of the vessel about its e.g.

CM = CM w() + (CL cos a + C(Lw sin a)(xw - xc g

+ (CL sin a. - Cdw cos a)(zM, - zc g )

- CdJ(z, - zc,g.)cos a + CdJ(x, - *c.g.)sin a

- C(Lp(zp - zc,g.)cos a + C^p(xp - *c.g.)sin a

for a « 1 it reduces to

CL(xu, -

— zc g

(C,a

(1)

(2)

It will be assumed that the lift coefficient is linear with the
angle of attack, in which case

a = (CL - CL#)/a (3)

with a being the lift slope coefficient and CLO the lift coeffi-
cient at zero angle of attack. It will be further assumed that
drag coefficients of the lines and pilot are independent of the
lift coefficient, whereas the drag coefficient of the wing is
given by the parabolic polar

KCl (4)
1297



1298 IOSILEVSKII

canopy ^-elevon

with Cdw() and K constants. Accordingly, Eq. (2) becomes

J]CL

(5)

V0 + [(xw - *c.g.) - (l/a)CL.0(zw

/fl)(l - aK)(zw - zc.g.)Ci

where

III. Trim and Stability
If a vessel is to hold its attitude, then

CM = 0

With Eq. (5), Eq. (7) yields a quadratic equation

flC^o + [a(xw - *c.g.) - C^()(zw, - zc.g.)]CL,trim

+ (1 - aK)(zw - zc.g.)Ci,trim = 0

(6)

(7)

(8)

for the lift coefficient CL trim at equilibrium (trim). The two
obvious solutions of Eq. (8) are

1

2(1 - aK)(zw - zc.g.)
(~a(xw - * .)

L#(zw - zc.g.) ± {[a(xw - xcj - CL#(zw - zc.g.)]2

aK)(zw- zc.g.)}>/2) (9)

Among those two solutions, if they exist, we choose the
one at which the vessel is statically stable, i.e., we choose the
solution for which

dCL
< 0 at CL = Q,trim (10)

Assuming, for simplicity, no elastic deformations of the can-
opy and the lines with the change in lift coefficient, one has
that

M
—— « (xw
v\~^ j

zc>g.)

(11)

by Eq. (6). Hence,

(̂ », - *c.g.) - - Q.uCz^ - zc.g.)

- - CM,0(1 - aK)(zw - zc.g.) (12)

at CA = C,.,trim, by Eq. (9).
For inequality (10) to hold, the sign in Eq. (12), and cor-

respondingly in Eq. (9), needs to be minus; from which

1

2(1 - aK)(zw - zc.g.)

zw - zc.g.) - {[a(xw - xc_g_)

M,0(l - aK)(zw - zc.g.)}1/2)

(-a(xw -

zw - zc.g.)]2

(13)

Note that both CM 0 and CL# are functions of the (generalized)
elevons deflection 8e. With those functions known, Eq. (13)
defines CL,trim(*c.g., 8e).

IV. Forward Center of Gravity Limit
It is clear that solution (13) for CLtr[m exists only if

[a(xw - *c.g.) - CL#(zw - zc.g.)]2

- aK)(zw - zc.g.) (14)

In Eq. (14), the left-hand side (LHS) is nonnegative, whereas
the right-hand side (RHS) is either positive or negative, de-
pending on signs of the respective multipliers. It is shown in
Appendix A that under normal circumstances aK < 1. Also,
zu ~ zc.g. < 0> by the choice of the coordinate system (see
Fig. 1). Hence, if CM 0 > 0, then Eq. (14) holds uncondition-
ally, i.e., no direct limitations are imposed on the longitudinal
e.g. position. If, on the other hand, CM 0 < 0, then there exists

x± = xw -

0(l - aK)(zw - zc.g.)

such that Eq. (14) holds if either

or

For jc . = x±, the absolute value of CL trim is

- aK)(zw - zc.g.)

by Eqs. (13) and (15). Hence, by Eqs. (13) and (18)

C/^trim — CL,\ f°r CaCri *c.g. — X_

C, trim ^ —C, , for each *r(J > ;c,

(15)

(16)

(17)

(18)

(19)

(20)

Since negative values of C7 trim are irrelevant in the present
discussion, Eq. (17) is ruled out by Eq. (20); whence the e.g.
should be positioned behind *_, by Eq. (16). In this case,
Eq. (19) implies that there exists a lower bound on the lift
coefficient possibly attainable at trim.

Note that a gliding parachute with CM 0 < 0 is neutrally
stable at jccg = ;c_, by Eqs. (12) and (15). Since the vessel
is supposed to be stable at ;ccg < *_, by Eqs. (12), (13), and
(16), moving the e.g. backward seems to have a stabilizing
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effect. This may be formally shown as follows. Substitute Eq.
(15) in Eq. (12) so as to obtain

In this expression (xw — x _ ) — (lla)CL^(zw - z c g ) > 0, by
Eq. (15); zw - zcg < 0, by the choice of the coordinate
system; and CL() is positive for a typical canopy. Hence, an
increase in x_ - ;ccg makes the derivative dCM/dCL more
negative.

Using typical values for all pertinent parameters appearing
on the RHS of Eq. (6), one may find that the sum of drag
contributions to CM# is usually positive (see Appendix B).
Hence, at least in principle, by flattening the profile one can
design a vessel with positive CM0. As already cited, such a
vessel will have no apparent limitations on its longitudinal
e.g. position, and therefore, it could be designed to fly at any
desired lift coefficient below stall [see Eq. (13)].

At the same time, it seems improbable that one can design
an elevens-controlled gliding parachute in such a way that it
will have a reasonable range of accessible lift coefficients on
the one hand, and nonnegative CM () for all possible elevens
deflections on the other. But in order to trim the vessel with
negative CM 0, the most forward e.g. position should be limited
by Eq. (16). Thus, given the range A = (5min, 6max) of usable
elevens deflections, the requirement that HI (a trim condition
should exist for each 8e in A) limits the forward e.g. position
by

*c.g..i = inf[*_(5,)|5,e A and CMt0(8e) < 0] (21)

V. Simplified Model
To simplify all matters considerably, let us make the fol-

lowing two assumptions:
Al: CM(} is a decreasing function of 5e;
In the context of Al, note that dCMS)ld8e = 8CM W0/d8e -

(zw - zc.g.)dC,AH,()/d6,, by Eq. (6). Given that the canopy is
not stalled, the first term of the RHS of this equation is always
negative. At the same time, the second term, although yield-
ing a positive contribution, vanishes for small elevons deflec-
tions (see, e.g., Ref. 2, p. 109). Hence, at least for a certain
range of elevons deflections, Al holds.

A2: (dCM#/d8e)(dCL#/d8e) is a negative-valued nonde-
creasing function of 8e.

In the context of A2, note that in the case where the canopy
is approximated by an equivalent rigid straight wing equipped
with a plain flap, the ratio (dCM^/d8e)/(dCL^}/d8e) is shown in
Sec. VIII to be independent of 8efor small deflections. Hence,
at least under these circumstances, A2 holds.

Under assumption Al, there exists 5(), such that CM^(8())
= 0. Since no forward limit bounds the e.g. position when
CM(} is nonnegative, it will be implicitly assumed that 8(} <
Smax-

Let 8{ = sup(50, 8min) be the minimal allowable elevons
deflection for which CMO is nonpositive. By Eq. (15), *_ is
continuous on (5,, 5max). Hence, the minimum of x_ on this
interval corresponds either to an extremum of ;c_, or to one
of the endpoints 8l and 6max.

Seeking the extremum of ;c_, we need to find such a de-
flection 5ex of the elevons, that

r = 0 at 8, = Sex (22)

Substituting Eq. (15) in Eq. (22), one readily finds that 8ex is
a solution of the equation

- aK)
- zc. d8e

(23)

With zw < zc g , the expression on the RHS of Eq. (23) is a
negative-valued nondecreasing function of 8e, by assumption
A2. Hence, under assumptions Al and A2, Eq. (23) has a
single solution. This solution must satisfy

Sex > 80 (24)

by definition. Moreover, ;c_(5ex) is a minimum, by Eq. (15).
Accordingly, in two particular cases where 8ex < 8min and 8ex
G A, one has that xcgj = x__(8min) and *c.g.j = x_(8ex),
respectively.

For future reference, note that

zw - zc 38e

dC,
88,

(25)

for each ;cc,g. < x_(8ex) by Eqs. (23), (18), and (19).

VI. Control Derivatives
Consider the derivatives dCLM-Jdde and dCLttIim/dxc^m. Dif-

ferentiate, in turn, on both sides of Eq. (8) with respect to
8e and xc g , and use Eq. (8) in the resulting expressions so as
to obtain

- aK)(zw - zc.g.)Ci,tri

/ ^^?(zw - zc.g.)Ci,tri d8e

38, -aCMS) aK)(zw - zc.g.)Ci,trilT

(26)

(27)

The expression appearing in the denominator on the RHS of
either Eq. (26) or Eq. (27) is negative for each jccg < jccg l
by Eqs. (18), (19), and (21). Hence,

< 0 for each *cg < xcg ^ (28)

That is, moving the e.g. forward reduces the lift coefficient
at trim, as in a conventional vessel.

Predictable longitudinal control of a vessel requires that the
lift coefficient at trim should be a monotonic function of con-
trols deflection. For a gliding parachute this requirement may
be specified as H2 (lift coefficient at trim should be an in-
creasing function of elevons deflection) or, equivalently,

88
^^ > 0 for each 8e in A (29)

From Eq. (28) it follows that in order to satisfy Eq. (29)
for some xc g < *c.g.,i one needs

(zw - zc.g.)Q.,trir
dCLO1 dd. ^ < 0 for each Se in A

(30)

In Eq. (30), 3CL()/d8e is normally positive,* whereas zw - zc g
is negative. Hence, with

(31)
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Eq. (29) imposes a restriction

C/,trim(*c.g., * (32)

on the lift coefficient that can be obtained for each 8e in A.
But if Eq. (29) holds, then CLtrim is an increasing function of
8e. At the same time, under assumption A2, C^2 is a non-
increasing function of 8e. Hence, Eq. (32) can be reduced to

Equation (33) in conjunction with Eqs. (28) and (8) can be
used to define an additional restriction on the most forward
e.g. position. With

(zc.g. - aK)CL]/a (34)

the longitudinal e.g. position needed to trim a vessel at lift
coefficient CL with elevons deflected at 8e, this restriction
takes on the form

*c.g. < *c.g.,trim[Q,2(Smin), 8m[n] (35)

But, Eq. (32) and, hence, Eq. (35), hold identically if jccg <
*_(5ex) and 8e > 5ex, by Eqs. (25) and (28). Accordingly

if

if

(36)

(37)

Concurrently, the minimal lift coefficient attainable at trim is
CLA(8min) when 5ex < 6min, and C^2(5min) when 6ex > 6min [see
Eqs. (19) and (33), respectively].

VII. Minimal Lift Coefficient at Trim
Concluding the results of the preceding three sections, the

forward e.g. limit, and, concurrently, the minimal attainable
lift coefficient are consequences of the requirements HI and
H2. From the design point of view, HI seems to be weaker
than H2. In fact, as cited in the discussion of Sec. IV, by
flattening the wing's camber, one can design a vessel with
positive CV0(5min); in which case 5ex > 8Q > Smin, by Eq. (24).
Hence, the forward e.g. limit is xcg trim[CL2(8min), 5min], by
Eq. (37), whereas the minimal lift coefficient limit is CL2(8min),
by Eq. (33); both limits are consequences of H2.

By Eq. (31), C{ 2(8mm) depends on several design param-
eters, of which the most noticeable are the relative lengths of
the elevons chord and of the lines. An increase in either of
these two parameters typically reduces CL2. Increasing the
line length relative to the mean aerodynamic chord increases
zcg ~~ zw (see Sec. II), whereas increasing the elevons chord
relative to the mean aerodynamic chord reduces the ratio of
the derivatives dCMJJdde and dCLtQ/88e.

The last point is best elucidated by considering the limit
where the elevons extend over the whole wing. In this case,
elevon deflections do not affect CMO at all; whence CL2 =
0. In other words, no limit is imposed on the minimal lift
coefficient at trim. Since CL2 is clearly positive in the case
where the elevons occupy the trailing-edge area only, the
initial assertion follows. In this context also note that appli-
cation of the all-wing elevons is analogous to the change in
e.g. position (relative to the canopy-fixed coordinate system
depicted in Fig. 1). Hence, the present conclusion that min-
imal lift coefficient at trim is unbounded with CM# > 0 and
all-wing elevons agree with the comparable conclusion of Sec.
IV.

Line length is a fairly inflexible parameter, as it affects most
stability derivatives of the vessel. In fact, the ratio between
the lines length and wingspan is almost the same in all present

designs. With this said, parachutes with high-aspect wings
(having short aerodynamic chord) should have higher top
speed than those with low-aspect wings. This conclusion is in
apparent agreement with present design trends.

Large elevons require large control forces. Also, they may
complicate actuators design, as the lines will need to be short-
ened, in turn, from the trailing edge forward. Yet, they hold
the potential of a gliding parachute with aerodynamically un-
limited minimal lift coefficient.

VIII. Estimate of CLf2

We seek an order-of-magnitude estimate of C^2(6min). To-
ward this end, approximate the canopy as a straight rigid wing
equipped with a trailing-edge full span plain (sealed) flap. Let
ce be the relative chord of the flap and 8e « 1 be the angle
of its deflection. Neglecting in Eq. (6) the dependence of Cd w0
on 8e (Ref. 2, p. 109), one readily finds that

(38)88e

In the framework of a lifting-line theory, both dCM w0/38e and
(l/a)dCLJd8e are known to be independent of the AR (Ref.
3, pp. 150 and 139, respectively). Hence, using results of the
thin airfoil theory (Ref. 3, pp. 90 and 91),

77 sin 6e(l + cos 6e)
w 2(0e + sin 6e)

where

Be = cos-'(I - 2c,)

(39)

(40)

With zcg - zw typically between 2.2-2.5, and relative
elevons chord typically between 20-30%, Eq. (39) yields CL2
between 0.57-0.4 (see Fig. 2). At 35 N/m2 wing loading, these
values correspond to a flight speed between 36-43 km/h at
standard sea level conditions, in good agreement with the top
speed data of current designs.

In this context it is worth noting that in soaring, the high-
speed potential is needed mainly to advance (penetrate) against
the wind. Accordingly, the lift coefficient CL^P yielding max-
imal ground (penetration) speed seems to be an ultimate de-
sign target for the minimal lift coefficient limit of a gliding
parachute. This lift coefficient is shown in Appendix C to be,
roughly, V2CD () where CD () is the respective zero-lift drag
coefficient. For a typical gliding parachute CD$ ~ 0.08 (see
Appendix B), whence CL p ~ 0.12, corresponding to the top
speed of about 70 km/h at standard sea level conditions and
35 N/m2 wing loading (see Appendix C).

IX. Speed System
It is commonly accepted with parachute designers that CL trim

at 8e = 8min is set to be slightly less than the lift coefficient
Q,,gude givmg the best glide ratio; practice shows that this
setting minimizes average pilot workload under typical op-

0.2 0.4 0.6 0.8 1.0
0.0

-0.5

-1.0

-1.5

Fig. 2 Minimal lift coefficient limit as a function of elevons relative
chord.
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erating conditions. In the framework of the present model,
where drag coefficient is linear in C2

L [see Eq. (4)], it is well
known (e.g., Ref. 4, p. 167) that

'L, glide (41)

For a typical gliding parachute (see Appendix B) Eq. (41)
yields CL glide ~ 0.9. As this figure is much larger than the
typical minimal lift coefficient limit of about 0.5 (see Sec.
VIII), a pilot cannot utilize the top speed potential of its vessel
using elevons only; to fly faster a more forward e.g. position
is needed. The latter may be attained, e.g., by pulling the
lines attached to the forward half of the canopy (recall that
e.g. position is defined relative to the coordinate system de-
picted in Fig. 1); a system of lines and pulleys designed to do
that is commonly referred to as a speed system.

X. Rear Center-of-Gravity Limit
From the previous discussion it follows that no stability (HI)

or control (H2) requirements bound the most rear e.g. po-
sition. At the same time, for a given elevons deflection, the
lift coefficient at trim increases when the e.g. moves back-
ward, by Eq. (28). Consequently, there exists a certain back-
ward e.g. position where the canopy will stall at the maximal
(mechanical) elevons deflection. Hence, the requirement that
H3 (maximal elevons deflection Smax should be attained with-
out stalling the canopy) imposes a restriction on the most rear
e.g. position. Specifically, with CLmilx(8t) the maximal lift
coefficient at stall with elevons deflected at 8e, H3 yields

jcc.g. < supfrc.g.,trim[Q,inax(5J, 5J18e G A} (42)

by Eqs. (28) and (34).

Appendix A: Estimate of the Product aK
Assuming that the lift slope a and the drag-polar constant

K of an arched wing can be roughly approximated by the
values of those constants corresponding to a comparable straight
wing, one has that

K « (1 + 8 + TrksA)lirA

(Al)

(A2)

(Ref. 2, pp. 137, 194). Here, a2D is the lift-slope coefficient
of the wing's profile, A is the (projected) AR of the wing, 8
is a planform efficiency correction factor, and ks is a separation
drag correction factor.

With all parameters appearing on the RHSs of Eqs. (Al)
and (A2) being nonnegative, it is fairly straightforward to
show that the product aK has a maximum at

A =
2ksa2

D(l 8)
TT[(! + 8)2 - k2a2

D]

Hence, if k,a2D < 1 + 5, then

2(1 + 5)
< 1

(A3)

(A4)

Typically, a2D < 6, 8 > 0, and ks < 0.1 (see Appendix B);
from which Eq. (A4) holds under normal circumstances.

Appendix B: Typical Values of Some
Aerodynamic Coefficients

Pertinent aerodynamic coefficients of a typical gliding
parachute with a canopy of 26 m2 and a span of 10 m are
estimated next to within one significant digit.

Assume wing section LSI-0417 with 8.4% chord air intake.
Assume no aerodynamic interference between the canopy and
the lines. Then, Cd w(} -0.03 and a,D ~ 5 by Figs. 7 and 9 of
Ref. 5.

To estimate the coefficients a and K, approximate the can-
opy by an equivalent straight rigid wing of the same projected
AR. Then, a ~ 3.3 by Eq. (Al); whereas 8 ~ 0.1 by Fig.
4.22 of Ref. 2, and ks ~ 0.02 by Fig. 7 of Ref. 5. Consequently,
K ~ 0 . 1 b y E q . (A2).

Assume that the canopy is attached to a pilot by 500 m of
1.5-mm lines of a circular cross section. Assume all lines to
be almost perpendicular to the flow and no aerodynamic in-
terference between them. Given a typical flight velocity of 10
m/s, the corresponding crossflow Reynolds number on a single
line is of the order of 103; whence the drag coefficient of all
lines, based on their frontal area, should be about 1.1, by Fig.
4.6 of Ref. 2. Accordingly, CdJ ~ 0.03.

Assume that a pilot holds a sitting position. Then, the pilot's
drag area should be about 0.5 m2, by Ref. 6; where Cd^p ~
0.02. The parasitic drag coefficient CDO of the entire vessel
is CD# = Qlv() + Caj + Q, ~ 0.08. '

Appendix C: Maximal Penetration Speed of a
Gliding Parachute

Consider a vessel gliding without an engine in quiescent air
of density p. Let W and S be the weight of the vessel and its
wing area, respectively. Also, let V be the true airspeed of
the vessel and y be the glide-path-angle. Assuming unaccel-
erated motion, one has that

W cos y = ±pV2SCL

W sin y = {pV2SCD

(Cl)

(C2)

where CL and CD are the lift and drag coefficients, respec-
tively. The horizontal velocity component (penetration speed)
VH of the vessel is, by definition,

Vff = V cos y

From Eqs. (Cl) and (C2)

cos y = CL/VCi 4- C2
D

from which

V2
f = V2 cos2y =

2WC2

pS(C2
L

(C3)

(C4)

(C5)

by Eq. (Cl).
Noting that VH -» 0 as either CL -» 0 or Q -» <», VH has

an extremum. Accordingly, the lift coefficient maximizing VH
will be found from the equation

2CI = 3CLCD (C6)

With parabolic drag polar

CD = CD.0 + KCi (C7)

Eq. (C6) becomes

4KC*D + (1 - 6KCDJO)CD - CDja = 0 (C8)

Equation (C8) has an obvious solution

CD = 6KCD 4KCD.0 + 36K2C2
DJJ)"X]

(C9)
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from which

CL = (1/2AV2)[(1
- 1 - 2KCDS^ = V2CD,0[1

by Eq. (C7). At this lift coefficient

cos y = V![l +

VH = V(4W/3V5p5CD,0)[l

(CIO)

(Cll)

(C12)

(C13)

by Eqs. (C4), (Cl), and (C3), respectively. Typically, K -
0.1 and CD o ~ 0.08 (Appendix B). Hence, CL - 0.12, by Eq.
(CIO). With a wing loading of 35 N/m2, this lift coefficient

corresponds to V ~ 70 km/h and VH ~ 60 km/h at standard
sea level conditions.
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Wings, and Wing Bodies; High-Lift Systems; Propulsion Systems; Rotors;
Complex Configurations; Forecast. Includes over 900 references and 650
graphs, illustrations, tables, and charts, plus 42 full-color plates.

1990, 925 pp, illus, Hardback, ISBN 0-930403-69-X
AIAA Members $69.95, Nonmembers $103.95
Order #: V-125 (830)

Place your order today! Call 1 -800/682-AIAA

American Institute of Aeronautics and Astronautics

Publications Customer Service, 9 Jay Could Ct., P.O. Box 753, Waldorf, MD 20604
FAX 301/843-0159 Phone 1 -800/682-2422 8 a.m. - 5 p.m. Eastern

Sales Tax: CA residents, 8.25%; DC, 6%. For shipping and handling add $4.75 for 1 -4 books (call
for rates for higher quantities). Orders under $100.00 must be prepaid. Foreign orders must be
prepaid and include a $20.00 postal surcharge. Please allow 4 weeks for delivery. Prices are
subject to change without notice. Returns will be accepted within 30 days. Non-U.S. residents
are responsible for payment of any taxes required by their government.


