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Center of Gravity and Minimal Lift Coefficient Limits of a
Gliding Parachute
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Technion— Israel Institute of Technology, Haifa 32000, Israel

Standard static stability analysis is used to reveal a peculiar nature of longitudinal c.g. limits of a gliding
parachute. Specifically, it is shown that the most forward c.g. position of the parachute is limited by a loss of
longitudinal static stability and by a loss of control power, whereas the most rear c.g. position is limited by a
requirement of stall-free controls range. It is also shown that a forward c.g. limit imposes a limit on minimal
lift coefficient possibly attainable at trim. A typical value of this minimal lift coefficient limit predicted by the
present analysis is in a good agreement with the top speed data of currently flying designs.

I. Introduction

HE term “‘gliding parachute” is associated with several

types of vessels utilizing ram-air-inflated flexible cano-
pies to produce lift. In this exposition we shall use this term
to imply mainly a recreational soaring vessel operated by a
single pilot.

Longitudinal and lateral control of a gliding parachute is
conventionally done with the lines attached to the trailing
edge of the canopy, a pull on these lines causes the trailing
part of the canopy to flex downward, serving much the same
as a pair of conventional elevons. In some designs, a pilot
can also control the lengths of the lines attached to the forward
half of the canopy so as to move himself (and the vessel’s
c.g.) forward and backward relative to the canopy.

In the context of longitudinal control, two flying qualities
of a gliding parachute seem peculiar. One is that for a lon-
gitudinally stable vessel, the lift coefficient increases with ele-
vons deflected downward. The other is that, judging from the
top speed data of currently flying designs, there seems to exist
a minimal lift coefficient (roughly 0.5) at which a conven-
tionally built gliding parachute can be possibly trimmed, re-
gardless of the particularities of its design.

In this exposition, a standard longitudinal static stability
analysis (e.g., Ref. 1) is used to show that a minimal lift
coefficient limit does indeed exist; moreover, it is a conse-
quence of requiring the lift coefficient to be an increasing
function of elevons deflection. Specifically, it is shown that,
in apparent contrast with a conventional vessel, a loss of lon-
gitudinal static stability and a loss of control power each im-
poses a limit on the most forward c¢.g. position, and, concur-
rently, on the minimal lift coefficient possibly attainable at
trim. It is also shown that, with a proper design, requiring
the lift coefficient to be an increasing function of elevons
deflection is sufficient to ensure longitudinal static stability;
in which case both the forward c.g. and minimal lift coefficient
limits are associated with a loss of control power.

Under several simplifying assumptions, linear lift curve slope,
parabolic drag polar, fixed-shape canopy, fixed-lengths lines,
and plain flaps for elevons, the present analysis suggests a
very simple expression for the minimal lift coefficient limit.
The value of this limit depends, mainly, on the relative elevons
chord and on the lines-to-chord lengths ratio; specifically, it
decreases with an increase in either parameter. A sample
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calculation of the minimal lift coefficient limit for a typical
gliding parachute yields, indeed, about 0.5.

II. Pitching Moment

Consider a gliding parachute in a symmetric unaccelerated
flight. Following conventional definitions of aerodynamic
coefficients, let the projected wing area and its mean aero-
dynamic chord serve as the respective references. Let C,,,,
C,» and C, , be drag coefficients of the canopy, the lines,
and the pilot, respectively. Let, also, C, and C,, ,,, be the lift
coefficient and the pitching moment coefficient of the canopy
about its aerodynamic center, respectively.

Select a standard Cartesian coordinate system, with the x,
y, and z axes pointing forward, right and downward, respec-
tively. For the sake of being specific, it will be assumed that
the x axis connects the trailing and the leading edges of the
midsection of the wing. Using wing’s mean aerodynamic chord
as a unit of length, let (x,,, z,), (X.,, Z.,), ¥, 2, and (x,,
z,) be the respective dimensionless coordinates of the wing
aerodynamic center, vessel’s c.g., lines’ c.p., and pilot’s c.p.
(see Fig. 1). Also, let a be the angle of attack, measured
between the direction of the flow and the x axis.

The pitching moment coefficient of the vessel about its c.g.
is

Cy =
+ (C_sina — C,,, cos a)(z,, —
— Cd.l(zl —
_ Cd_,,(z,) _

Cywo + (Cocosa + C

d.w

sin @)(x,, — X.,)
Zc.g.)
Zeg)eos a + Cyy(x, — X, )8in «

z.g)eos a + C, (x,

— X, )8in & (1)
for « << 1 it reduces to
Cu=Cppo —

+ CL (xw -

Cy/(z, — Zc.g.) - Cd,p(zp - ZCAg.)
xc.g) + (CLa - C{Lw)(zw_ Zc,g.) (2)

It will be assumed that the lift coefficient is linear with the
angle of attack, in which case
a=(C, — Cpy)a 3
with a being the lift slope coefficient and C, , the lift coeffi-
cient at zero angle of attack. It will be further assumed that
drag coefficients of the lines and pilot are independent of the
lift coefficient, whereas the drag coefficient of the wing is
given by the parabolic polar
C = C{/,w() + KC} (4)

d.ow
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Fig. 1 Notation.

with C, ., and K constants. Accordingly, Eq. (2) becomes

Cp = Cuyyo + [(x, — xc,gA) - (Va)Cp (2, — Zc.g.)]CL
+ (Va)(1 — aK)(z,, — z.,)C1 ®)
where
Cro = Cruo = Canolz — Zc.g.) = Cufz; — Zc.g.)

= Cuplz, = 24) (6)

III. Trim and Stability
If a vessel is to hold its attitude, then

Cy=0 (7)
With Eq. (5), Eq. (7) yields a quadratic equation

- CLJ)(ZW - Zc.g.)]CL,tnm
+ (1 - aK)(ZW - Zc.g.)Ci.lrim = O (8)

aCy, + lalx, — Xeg.

for the lift coefficient C, ;,, at equilibrium (trim). The two
obvious solutions of Eq. (8) are

1
Larim = 2(1 = aK)(z, — 2.5) (—alx, — x.,)
+ Cr(z, — Zc.g.) = {la(x, — Xc,g,) = Crolz, — Zc.g.)]2
— 4aCy (1 — aK)(z,,— Zc.g.)}wz) 9)

C

Among those two solutions, if they exist, we choose the
one at which the vessel is statically stable, i.e., we choose the
solution for which

aC
B—Elf <0 at CL = C[,.rrim (10)

Assuming, for simplicity, no elastic deformations of the can-
opy and the lines with the change in lift coefficient, one has
that

aC 1
(:)CM = (xw - chg.) - ; Cl_‘()(zw - ZcAgA)
L

+ %(1 - aK)(z, — z.,)C, (11)

by Eq. (6). Hence,

aC 1 7
BC}Y == i{[(xw = Xey) — ;CL,O(ZW - ZC-E-):|

4
- CM.()(I
a

— aK)(z, — zc,g_)} H 12)

at CL = Cl,.trim’ by Eq (9)
For inequality (10) to hold, the sign in Eq. (12), and cor-
respondingly in Eq. (9), needs to be minus; from which

1
L.trim 2(1 _ aK)(Zw _
+ CL‘U(ZW - Zc.g.) - {[a(xw - xc.g. - CLv()(Zw - Zc.g.)]z
— 4aCy (1 — aK)(z, — Zeg ) (13)
Note that both C,, , and C, , are functions of the (generalized)

elevons deflection §,. With those functions known, Eq. (13)
deﬁnes Cl‘.trim(xc.g.? 8()

C

ZCAgA) (_a(xw - xc.gA)

IV. Forward Center of Gravity Limit
It is clear that solution (13) for C, ., exists only if

= Crolz — 2o )T
= 4aCM,(](l - aK)(Zw - Zc.g.) (14)

[a(xw - xc.g.

In Eq. (14), the left-hand side (LHS) is nonnegative, whereas
the right-hand side (RHS) is either positive or negative, de-
pending on signs of the respective multipliers. It is shown in
Appendix A that under normal circumstances aK < 1. Also,
z, — Z., < 0, by the choice of the coordinate system (see
Fig. 1). Hence, if C,,, = 0, then Eq. (14) holds uncondition-
ally, i.e., no direct limitations are imposed on the longitudinal
c.g. position. If, on the other hand, C,, , < 0, then there exists

X, = xw - (1/a)CI,,()(Zw - Zc.g.)

+ (Va)V3aCy (1 — aK)(z, — 2.,) (15)

such that Eq. (14) holds if either

Xeg S X_ (16)
or

Xe, T X, 17)

For x., = x., the absolute value of C, ;. is

Cra = a - aI?)C(};:,j - Z.g) (18)

by Egs. (13) and (15). Hence, by Eqgs. (13) and (18)
Ciom=C,, foreach x., =x_ (19)
Cryim= —C,, foreach x_, =x, (20)

Since negative values of C, .. are irrelevant in the present
discussion, Eq. (17) is ruled out by Eq. (20); whence the c.g.
should be positioned behind x_, by Eq. (16). In this case,
Eq. (19) implies that there exists a lower bound on the lift
coefficient possibly attainable at trim.

Note that a gliding parachute with C,,, < 0 is neutrally
stable at x,, = x_, by Eqs. (12) and (15). Since the vessel
is supposed to be stable at x., < x_, by Eqs. (12), (13), and
(16), moving the c.g. backward seems to have a stabilizing
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effect. This may be formally shown as follows. Substitute Eq.
(13) in Eq. (12) so as to obtain

dCy
aC,

= {0 = xe 200, — x0)

2

- ;CL,U(ZW - Zc.g.) + (x,, - xc.g.)]}l/z

In this expression (x,, — x_) — (1/a)C, (z,, — z.,) = 0, by
Eq. (15); 2z, — z., < 0, by the choice of the coordinate
system; and C, , is positive for a typical canopy. Hence, an
increase in x_ — x., makes the derivative 4C,,/dC, more
negative.

Using typical values for all pertinent parameters appearing
on the RHS of Eq. (6), one may find that the sum of drag
contributions to C,,, is usually positive (see Appendix B).
Hence, at least in principle, by flattening the profile one can
design a vessel with positive Cy,,. As already cited, such a
vessel will have no apparent limitations on its longitudinal
c.g. position, and therefore, it could be designed to fly at any
desired lift coefficient below stall [see Eq. (13)].

At the same time, it seems improbable that one can design
an elevons-controlled gliding parachute in such a way that it
will have a reasonable range of accessible lift coefficients on
the one hand, and nonnegative C,,, for all possible elevons
deflections on the other. But in order to trim the vessel with
negative C,, ,, the most forward c.g. position should be limited
by Eq. (16). Thus, given the range A = (8, 8max) Of usable
elevons deflections, the requirement that H1 (a trim condition
should exist for each 8, in A) limits the forward c.g. position
by

xc.g,.l = inf[x7(66)|6y € A and CM‘”(6A’) = 0] (21)

V. Simplified Model

To simplify all matters considerably, let us make the fol-
lowing two assumptions:

Al: C,, is a decreasing function of §,;

In the context of Al, note that 3C,, /38, = 9C,, ,.0/38, —
(z,, = 2.,)0C,,./08,, by Eq. (6). Given that the canopy is
not stalled, the first term of the RHS of this equation is always
negative. At the same time, the second term, although yield-
ing a positive contribution, vanishes for small elevons deflec-
tions (see, e.g., Ref. 2, p. 109). Hence, at least for a certain
range of elevons deflections, Al holds.

A2: (3C,,(188,)(3C, (/98,) is a negative-valued nonde-
creasing function of §,.

In the context of A2, note that in the case where the canopy
is approximated by an equivalent rigid straight wing equipped
with a plain flap, the ratio (9C,,/98,)/(8C, /88,) is shown in
Sec. VIII to be independent of §, for small deflections. Hence,
at least under these circumstances, A2 holds.

Under assumption Al, there exists &,, such that Cy, (8,)
= 0. Since no forward limit bounds the c.g. position when
Cu o is nonnegative, it will be implicitly assumed that §, <

Let 8, = sup(8,, 8.n) be the minimal allowable elevons
deflection for which C,,, is nonpositive. By Eq. (15), x_ is
continuous on (§,, 8,,,). Hence, the minimum of x_ on this
interval corresponds either to an extremum of x_, or to one
of the endpoints 8§, and d,,,,-

Seeking the extremum of x_, we need to find such a de-
flection 8, of the elevons, that

— =0 at §

=5
28,

ex (22)

Substituting Eq. (15) in Eq. (22), one readily finds that &, is
a solution of the equation

. a(l - LlK) aCM,u § GCL,U 2
Cuo = z z < 98, a6, (23)

w g

With z,, < z., the expression on the RHS of Eq. (23) is a
negative-valued nondecreasing function of §,, by assumption
A2. Hence, under assumptions Al and A2, Eq. (23) has a
single solution. This solution must satisfy

8ex > 8y (24)
by definition. Moreover, x_(8,,) is a minimum, by Eq. (15).
Accordingly, in two particular cases where 8, < 8, and &,
€ A, one has that x., ; = X_(8ma) and x., , = x_(8.),
respectively.

For future reference, note that

-1

aCM.()
38,

aC’L.(]
a5,

a
CL.trim(xog’ 66") = m

8¢ = Bex 8e=5

ex

(25)
for each x., = x_(8.,) by Egs. (23), (18), and (19).

VI. Control Derivatives
Consider the derivatives dC, ;,,/38, and 0C; ;/0x. , . Dif-
ferentiate, in turn, on both sides of Eq. (8) with respect to
8, and x,, , and use Eq. (8) in the resulting expressions so as
to obtain

aC‘l..trim _ aci,lrim 26
WMy, - ~aCuyo + (1 — aK)(z,, — Zc.g‘)ci,trim (26)
aC’L 0 aCM Q
— 2 —_— _
aCl,,trim 3 (zw ZcAgA)CL.trim (95‘, a L.trim (")6‘, 27
a5, - —aCyo + (1 — aK)(z, — Zc.g.)Ci,trim @7

The expression appearing in the denominator on the RHS of
either Eq. (26) or Eq. (27) is negative for each x_, < x., ,
by Egs. (18), (19), and (21). Hence,

aC‘l.,trim

. <0 foreach x., <x.,, (28)

c.g.

That is, moving the c.g. forward reduces the lift coefficient
at trim, as in a conventional vessel.

Predictable longitudinal control of a vessel requires that the
lift coefficient at trim should be a monotonic function of con-
trols deflection. For a gliding parachute this requirement may
be specified as H2 (lift coefficient at trim should be an in-
creasing function of elevons deflection) or, equivalently,

aCL,!rim
%)

e

>0 foreach §,in A (29)

From Egq. (28) it follows that in order to satisfy Eq. (29)
for some x_, < x., , one needs

aC
0o _ 4%mo ¢ forcach 3, in A

a8, 38,
(30)

(zw - Zc.g.)CL‘lrim

In Eq. (30), 9C, /38, is normally positive; whereas z,, — z.
is negative. Hence, with

_ a aCMD aCL,o -
Crz = Zey = Z, < a6, >( a8, (1)

c.g.

2.
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Eq. (29) imposes a restriction
CL‘trim(xc.g_’ 54') > CL,Z(BL') (32)

on the lift coefficient that can be obtained for each §, in A.
But if Eq. (29) holds, then C, ., is an increasing function of
6,. At the same time, under assumption A2, C, , is a non-
increasing function of 8,. Hence, Eq. (32) can be reduced to

CL,trim(xc.g.5 5min) = CL.Z(Smin) (33)

Equation (33) in conjunction with Eqs. (28) and (8) can be
used to define an additional restriction on the most forward
c.g. position. With

Xe g__lrim(C[_’ 6() = Xy + CM,U(Be)/CL

+ (Zey — 2)[Cro(8) — (1 = aK)C,Ja (34)
the longitudinal c.g. position needed to trim a vessel at lift
coefficient C, with elevons deflected at §,, this restriction
takes on the form

xc.g. < xc.g.‘lrim[CL‘Z((Smin)’ amin] (35)

But, Eq. (32) and, hence, Eq. (35), hold identically if x_, <
x_(8.,) and 8, = §,, by Eqs. (25) and (28). Accordingly

x*((smin) < xc.g.‘trim[CL,Z(Smin)v 6min] lf 80.‘( < 6min (36)
X (6cx) > xc‘g‘.trim[CL.Z(Bmin)v amin] 1f 8cx > Smin (37)

Concurrently, the minimal lift coefficient attainable at trim is
C, \(8min) When 8, < 8, and C, 5(8,,,) When 8, > 8., [see
Egs. (19) and (33), respectively].

VH. Minimal Lift Coefficient at Trim

Concluding the results of the preceding three sections, the
forward c.g. limit, and, concurrently, the minimal attainable
lift coefficient are consequences of the requirements H1 and
H2. From the design point of view, H1 seems to be weaker
than H2. In fact, as cited in the discussion of Sec. IV, by
flattening the wing’s camber, one can design a vessel with
positive Cy; ((8,in); in Which case 8., > &, > 8,in, by Eq. (24).
Hence, the forward c.g. limit is X, ; im[CL 2(8min)s Ominl, DY
Eq. (37), whereas the minimal lift coefficient limit is C; 5(8,n),
by Eq. (33); both limits are consequences of H2.

By Eq. (31), C, »(8,.,) depends on several design param-
eters, of which the most noticeable are the relative lengths of
the elevons chord and of the lines. An increase in either of
these two parameters typically reduces C, ,. Increasing the
line length relative to the mean aerodynamic chord increases
z., — z, (see Sec. II), whereas increasing the elevons chord
relative to the mean aerodynamic chord reduces the ratio of
the derivatives dC,, /36, and aC, /9,

The last point is best elucidated by considering the limit
where the elevons extend over the whole wing. In this case,
elevon deflections do not affect C,,, at all; whence C, , =
0. In other words, no limit is imposed on the minimal lift
coefficient at trim. Since C, , is clearly positive in the case
where the elevons occupy the trailing-edge area only, the
initial assertion follows. In this context also note that appli-
cation of the all-wing elevons is analogous to the change in
c.g. position (relative to the canopy-fixed coordinate system
depicted in Fig. 1). Hence, the present conclusion that min-
imal lift coefficient at trim is unbounded with C,,, > 0 and
all-wing elevons agree with the comparable conclusion of Sec.
Iv.

Line length is a fairly inflexible parameter, as it affects most
stability derivatives of the vessel. In fact, the ratio between
the lines length and wingspan is almost the same in all present

designs. With this said, parachutes with high-aspect wings
(having short aerodynamic chord) should have higher top
speed than those with low-aspect wings. This conclusion is in
apparent agreement with present design trends.

Large elevons require large control forces. Also, they may
complicate actuators design, as the lines will need to be short-
ened, in turn, from the trailing edge forward. Yet, they hoid
the potential of a gliding parachute with aerodynamically un-
limited minimal lift coefficient.

VIII. Estimate of C; ,

We seek an order-of-magnitude estimate of C, ,(8,,,)- To-
ward this end, approximate the canopy as a straight rigid wing
equipped with a trailing-edge full span plain (sealed) flap. Let
¢, be the relative chord of the flap and §, << 1 be the angle
of its deflection. Neglecting in Eq. (6) the dependence of C, ,,,,
on 8, (Ref.2, p. 109), one readily finds that

aCM.() aCM.w()

3. (38)

e e

In the framework of a lifting-line theory, both ¢C,, /28, and
(1/a)aC, /35, are known to be independent of the AR (Ref.
3, pp. 150 and 139, respectively). Hence, using results of the
thin airfoil theory (Ref. 3, pp. 90 and 91),

_ T sin 6,(1 + cos 6,)
Cra= Ze, — 2z, 2(0, + sinb,) (39)

g w
where

6, = cos'(1 = 2¢,) (40)

With z., - z, typically between 2.2-2.5, and relative

elevons chord typically between 20-30%, Eq. (39) yields C, ,
between 0.57-0.4 (see Fig. 2). At 35 N/m? wing loading, these
values correspond to a flight speed between 36—43 km/h at
standard sea level conditions, in good agreement with the top
speed data of current designs.

In this context it is worth noting that in soaring, the high-
speed potential is needed mainly to advance (penetrate) against
the wind. Accordingly, the lift coefficient C, , yielding max-
imal ground (penetration) speed seems to be an ultimate de-
sign target for the minimal lift coefficient limit of a gliding
parachute. This lift coefficient is shown in Appendix C to be,
roughly, V2C,, where C,, is the respective zero-lift drag
coefficient. For a typical gliding parachute C,, ~ 0.08 (see
Appendix B), whence C, , ~ 0.12, corresponding to the top
speed of about 70 km/h at standard sea level conditions and
35 N/m? wing loading (see Appendix C).

IX. Speed System
It is commonly accepted with parachute designers that C,
at 8, = 8., is set to be slightly less than the lift coefficient
C, gice giving the best glide ratio; practice shows that this
setting minimizes average pilot workload under typical op-

@y 2DCL2

00 02 04 06 08 10 _
- ce

0.5

-10

-1.5 4

Fig. 2 Minimal lift coefficient limit as a function of elevons relative
chord. '
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erating conditions. In the framework of the present model,
where drag coefficient is linear in C? [see Eq. (4)], it is well
known (e.g., Ref. 4, p. 167) that

v C[)‘()/K (41)

For a typical gliding parachute (see Appendix B) Eq. (41)
yields C, 44 ~ 0.9. As this figure is much Jarger than the
typical minimal lift coefficient limit of about 0.5 (see Sec.
VIII), a pilot cannot utilize the top speed potential of its vessel
using elevons only; to fly faster a more forward c.g. position
is needed. The latter may be attained, e.g., by pulling the
lines attached to the forward half of the canopy (recall that
c.g. position is defined relative to the coordinate system de-
picted in Fig. 1); a system of lines and pulleys designed to do
that is commonly referred to as a speed system.

CL,gude =

X. Rear Center-of-Gravity Limit

From the previous discussion it follows that no stability (H1)
or control (H2) requirements bound the most rear c.g. po-
sition. At the same time, for a given elevons deflection, the
lift coefficient at trim increases when the c.g. moves back-
ward, by Eq. (28). Consequently, there exists a certain back-
ward c.g. position where the canopy will stall at the maximal
(mechanical) elevons deflection. Hence, the requirement that
H3 (maximal elevons deflection 8,,,, should be attained with-
out stalling the canopy) imposes a restriction on the most rear
c.g. position. Specifically, with C, ,...(8.) the maximal lift
coefficient at stall with elevons deflected at §,., H3 yields

chg < Sup{xc,g,,trim[Cl,,max(se)7 6(”81- € A} (42)
by Egs. (28) and (34).

Appendix A: Estimate of the Product aK
Assuming that the lift slope a and the drag-polar constant
K of an arched wing can be roughly approximated by the
values of those constants corresponding to a comparable straight
wing, one has that

a,,TA
== Al
“ a,p + Vai, + mA? (AD)

K~ (1 + 8 + wk,A)mA (A2)

(Ref. 2, pp. 137, 194). Here, a,,, is the lift-slope coefficient
of the wing’s profile, A is the (projected) AR of the wing, &
is a planform efficiency correction factor, and &, is a separation
drag correction factor.

With all parameters appearing on the RHSs of Eqs. (Al)
and (A2) being nonnegative, it is fairly straightforward to
show that the product ¢K has a maximum at

2kazy(l + 8)
= A3
AT T + 6 = keady) (A3)

Hence, if k,a,, < 1 + &, then

k23, + (1 + 6)?

K <
a4 D)

<1 (A4)

Typically, a,,, < 6, 8§ > 0, and k, < 0.1 (see Appendix B);
from which Eq. (A4) holds under normal circumstances.

Appendix B: Typical Values of Some
Aerodynamic Coefficients

Pertinent aerodynamic coefficients of a typical gliding
parachute with a canopy of 26 m? and a span of 10 m are
estimated next to within one significant digit.

Assume wing section LS1-0417 with 8.4% chord air intake.
Assume no aerodynamic interference between the canopy and
the lines. Then, C,,,, ~ 0.03 and a,,, ~ 5 by Figs. 7 and 9 of
Ref. 5.

To estimate the coefficients ¢ and K, approximate the can-
opy by an equivalent straight rigid wing of the same projected
AR. Then, a ~ 3.3 by Eq. (Al); whereas 6 ~ 0.1 by Fig.
4.22 of Ref. 2, and k, ~ 0.02 by Fig. 7 of Ref. 5. Consequently,
K ~ 0.1 by Eq. (A2). .

Assume that the canopy is attached to a pilot by 500 m of
1.5-mm lines of a circular cross section. Assume all lines to
be almost perpendicular to the flow and no aerodynamic in-
terference between them. Given a typical flight velocity of 10
m/s, the corresponding crossflow Reynolds number on a single
line is of the order of 10%; whence the drag coefficient of all
lines, based on their frontal area, should be about 1.1, by Fig.
4.6 of Ref. 2. Accordingly, C,, ~ 0.03.

Assume that a pilot holds a sitting position. Then, the pilot’s
drag area should be about 0.5 m?, by Ref. 6; where C,, ~
0.02. The parasitic drag coefficient C,, of the entire vessel
isCpy = Cyo + Cyy + C4,, ~0.08.

Appendix C: Maximal Penetration Speed of a
Gliding Parachute

Consider a vessel gliding without an engine in quiescent air
of density p. Let W and S be the weight of the vessel and its
wing area, respectively. Also, let V be the true airspeed of
the vessel and vy be the glide-path-angle. Assuming unaccel-
erated motion, one has that

W cos y = 1pV38C, (CH)
Wsin y = 1pV2SC,, (C2)

where C, and C,, are the lift and drag coefficients, respec-
tively. The horizontal velocity component (penetration speed)
V,; of the vessel is, by definition,

Vy = Vcosy (C3)
From Egs. (C1) and (C2)
cosy = C,/NVC, + Ch (C4)
from which

2WC1

V2 = Y2 20 = =L 0
A

(C5)
by Eq. (C1).
Noting that V,; — 0 as either C, — 0 or C, — «, V,, has

an extremum. Accordingly, the lift coefficient maximizing V,
will be found from the equation

2C3 = C3 + 3C,.Cp <Z?)> (Co)
L

With parabolic drag polar
C, = Cpy + KC37 (C7)
Eq. (C6) becomes
4KC3 + (1 - 6KCp)Cp — Cppy =0 (C8)
Equation (C8) has an obvious solution

Cp = (18K)[—1 + 6KC),, + (1 + 4KCpp + 36K2C3, )]
(€9)
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from which

C, = (12KVD[(1 + 4KC,,, + 36K>C% )"
-1 = 2KCpo]"? = \/ch),o[l + O(KCp )] (€10

by Eq. (C7). At this lift coefficient
cos y = Vi[1 + 6(KCp,)] (C11)
V = VRWA3pSC, )1 + 6(KCp,,)]  (C12)
Vi = VEWBV3pSCp )1 + 6(KCpy)]  (C13)

by Egs. (C4), (C1), and (C3), respectively. Typically, K ~
0.1 and C,, , ~ 0.08 (Appendix B). Hence, C, ~ 0.12, by Eq.
(C10). With a wing loading of 35 N/m?, this lift coefficient

corresponds to V ~ 70 km/h and V,; ~ 60 km/h at standard
sea level conditions.
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